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ABSTRACT

A method for the analysis of a transonic flow field in
a nearly circular duct with gradual changes in cross-section
is developed. A linearized differential equation for the
deviation from the results of the one-dimensional theory is
presented and is solved by the superposition of particular
solutions obtained by a product hypothesis. The potential
equation, in this case, was simplified for the \rlcinity of
the sonic wvelocity. ,

Application to a circular subsonic-supersonic duct is
made in order to determine the magnitude of propagated sub-
sonic disturbances and the resulting wvelocity distribution.
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SECTION I
INTRODUCTION

This report presents an analytical method for the calculation of
the flow field in a nearly circular duct with relatively gradual changes
in cross-section. Due to simplifications introduced by means of the
transonic law of similarity, the method in its present form would be
restricted to flow fields with Mach numbers close to unity.

The investigation was initiated in connection with a plan for
modifying the 10-Foot Wind Tunnel at Wright-Patterson Air Force Base.
It was intended to vary the cross-sectional area with small inserts,
rather than by a variation of the radius. A method was evolved to
obtain the magnitude of deviations from the ideal parallel flow which
might be caused by such an insert design. Before the actual computa-
tions were made the design was modified. However, the method itself
is of interest, in that there are many other applications. An appli-
cation, referring mainly to a modified test section design, will be
given in the second part of this report.

The present analysis begins with a basic flow as given by one-
dimensional theory. Any deviations from the basic flow are considered
small, so that they can be determined by a linearized partial differen-
tial equation. The general solution to the differential equation is
expressed by the superposition of particular solutions, each of which
is the product of a Bessel function dependent on the radial distance
y from the duct axis, a trigonometric function of the angular position
w, and a function of the axial position, x. Of special interest is
the last function which is influenced by the duct shape.

If one is interested only in supersonic flow analysis, an alternate
method of computation is the well-known method of characteristics. The
method of characteristics is more general, in that the condition of a
slow change in cross-section is not required. The method of character-
istics for three dimensions is similar to the present method in the
requirement of a nearly circular cross-section. The major advantages
of the present method are that the subsonic influences can be deter-
mined and that being essentially more analytical, a better picture of
the flow behavior in general cases may be obtained. In some cases,
depending upon the duct shape, the solutions can be obtained in a:
less tedious manner, .

Briefly, the report starts with the simplification of the general
flow differential equation by means of the transonic law of similarity.
Then & general method of solution is developed, and finally this result
is applied to some specific example.

AF-TR-5T790 1




SECTION II
THEQRETICAL CONSIDERATIONS

Simplification of the Flow Differential Equation Near the Sonic Speed

This analysis is based on a cylindrical coordinate system (Figure 1).
Let the x axis be the duct center line, ¥, the radial distance from the
X axis, and w s the angular position measured clockwise from the vertical
position. The velocity potential jis denoted by ¢ o Partial derivatives
are denoted by subscripts (i.e., = = ¢3)

The general three-dimensional equation for a steady potent.ial flow
(derived in Appendix A) is given by

(1.1) Pgz (1- ) -2 O (2589)+ P (1- 03)+ 1+ Quw =0

If deviations from a parallel sonic flow are small, the simplified
transonic equation results. (Derivation may be found in Appendix B).

(1.2) -(¥+) @y, D+ @,y + _Yx. + M -

where X = X

* ..
(1.3) (D(x,y):;;l-a“(cb——o.x)
and ‘v 1is the radius at the throat.

The Pressurs and Density Relations

The new potential term @(x, )is directly related to the velocity.
However, one may be interested in the pressure and density relations at
various positions along the duct. Bemmoulli's law for compressible non-
viscous gases is given by
1) &F rusu+vav=o

The last term is negligible, based on earlier assumptions.
Because AW = @y < , One can write

Ap= "‘Q"Q'((pxa.)

»
»
Since X'gi =a , the preceding equation is rewritten as

AF-TR-5790 2




(1.5) ‘%‘E =-3 (px

The Boundary Conditions

Let ¥ be the value of y at a point on the duct surface so that
T =T (x,w). This function, in the case of a vertical line of symmetry

is expressed as .

(1.6) ¥ = ¥el¥) -\-4?. (¥, () cos nw)

The functions rg, ry, sy « « « « « « I'p are obtained by a Fourier analysis
at the specific x positions, and are written as

_ an
(162) Vol0) = % 5 ¥ (1,0 dw

o

tN, 4
(1.6b) ?‘., (ﬂ:j F(x,m) cos nw dw
’ (+)

let r =

To

The boundary condition of zero flow normal to the duct surface must
be fulfilled. If the differences from the sonic velocity are small,
this condition is expressed as

dr -

1.7 - as @Y"‘ °
('Ifhe derivation may be found in Appendix C).

Let us introduce for the slope

_ d»

(1.8) ©= g%
Then one has the relation
1.9) Qy=Q+ 3 & CosVw
Where ©r, is an additional slope for the unsymmetrical configurations.

The Basic Hypothesis for the Solution

The solution is based on one-dimensional flow theory, in which the
velocity distribution over each cross section is considered constant.
The cross section is written as functions of the distance from the

AF-TR=-579C 3




minimum cross-section. The potential of this basic flow is denoted by ‘pa

, where %%’ = Qg g=‘f'\(\',V.\° Specifically, as derived in Appendix
D, this gives

L
- 4 Av
(1.10) @B% =\ v

The entire potential is expressed by
@) @= Qe+ P (%,y,w)

The @ represents the deviations from the basic flow, and shall be
considered small enough that higher order terms can be neglected. If the
values of the complete potential (Equation (1.11)) is inserted into the
transonic differential equation (Equation (1.2)) and second order terms
of @ are neglected, the following inhomogeneous equation is givent

—

(1012) “‘(’6"'\)( ¢Bx @:x"' ¢B“ .(_px) + ( avr + - ¢ ¢““) (XH) CPBx Qﬂu

For the representation of @ , let us introduce the following functions.
Let a Bessel function of V Y order and of the argument 11 be denoted by J, ")
Let 1,,,. be the yx"‘h argument (where )« =1,2,3 ., ..)of the Bessel

function J, , for which 43.(M_- 6 | The functions Z,.,,, are given by

an
(1.13) zv»(7)= Jv(Y ﬁvy)
The functions Z\,» fulfill the following differential equation

(1.1) dy t(Z'p\f f—;-:(,-?-!e +('V]vp"' ?,'i) Zw =0

There exists a relationship of orthogonality.between the & vj s 8O
that for w 72 v

(1.15) S Y va E\,» d\/ =0
°

Let us introduce

(1.16) S Y Zup dy=Yop

A hypothesis for the perturbation velocity potential is chosen in such a way
that the boundary conditions are fulfilled.

AF-TR-5790 L




- P=57 0 + 3 (3Y O W) cos vw)
+3 (0ap0 Zop) * 2, Z (2 O Z,u00) cos vu)

pz\ Py Ve
The functions % op(®x) and CL\,,».(*) (V=11,2,3...)must
be determined in such a way that the differential equations for )
(Equation (1.12) is fulfilled. Inserting this hypothesis into Equation
(1.12), one obtains

(1.17)

(e[ By, fz (0! Zop)* Doy 3., (2o )]
s > [ |} d ) " !
v} aw (o vy 4E) - AE Y (@0, 0L+ Poyu )
(1.18) +r 2 —(w)[cp,‘z 3 (Qup Z,,. cos vu)¥ Qg
Py v\

© - w v 2
3 S (ayy 2y, cos vw)]i-ii. va.(_%‘t cos YW

»:‘ v“ »:' v=1 v=00
d Z cos YW vt ¥+ s LY
ST Ty Ty B0 vo) - ( )[E. v Y

cos vw(@g, O, + Doy e':.)] = - (¥4 (Pg, Ppux)

All the terms of this equation which contain trigonometric terms of
(where ¥ = 1, 2, %, L, etc.) must vanish separately.

For VY = 0 one has the conditlon
| _J - (Y
-$+)| @, ?- (Sop Zop) + @eayy E‘ (0 ey Zop)

(119)  *3Z o, (é-d%%: + 3 i};&)-(x«-\)[ X(@p, 0.+ q)eue,')]
= -2, - (3+) Qg, Qy,,

The conditions for V=1, 2, 5, « . . are

-(’('H) [Qe‘ z‘ (&":’. Ev’.\"' Qs;, 'i' (O‘v')us EV}A)]

(1.20) S P Zy L dZvp _ Y
vtz N o YY Tay —v—,,-Z,.,.\

= (&)Y (e, + Pus &)
It can readily be seen from Equation (1.10) that
1.21) 2€,= —(¥+) Dp, Py,

AF-TR=5790 5




Further simplifications are made using Equation (1.l}) with Equa-
tions (1.19) and (1.20), respectively.

(1.22) -("'H) E‘[?—"» (Qa‘ ‘L.,:‘ * Qg,, Q'o,.,)]

o] - " '
-3 [‘n:» Z,,. a..r] = (3_;-_\\ y? (¢“ ©, + @g .y GQ)

Fy

(1.23) “(%H)é‘ [Ey»(%, °*v”)~ * Qe o,'r_\]

The equations for the perturbation functions. O.vjpa are obtained
by multiplying with the term y #Zv,. and integrating between y = 0 to
Y = 1. Because of the orthogonality relations for the Bessel functions,
all with the terms [y Zy. Z,, dy drop out except for jpzv .
Inserting these relations in Equations (1.22) and (1.23) one obtains
Equations (1.24) and (1.25), respectively.

Io’. tQB, Qc;: * ¢B%: Q:F + ﬁ.‘::'_'h' Qo’s]

(1.24)
- = KO’;J{(QB:G‘; *¢B‘M¢ ei)
25) K= _f‘?-..»(ﬂ 7 dy = ,—-1?‘1 AN SN

\ \ a -
(1.26) I°»= f° E‘P (Y) Y AY = “E -S. (Y ~’°)‘)
(Derivation may be found in the Appendix E). Also,

(1.27) I’)’ [ CPB* Q"t + QB%% Qv,; * 1~‘!“& O*V)u]
== K,» ¥ (Q,,e'v + qDBx:e’:)
@) Loz E.6) v dy=T G )

(1.29) K,,,.=S; Zyn(y) vy = %“ 3, (ﬁw )

£
)

From Equations (1.24) and (1.27), and the boundary conditions which
will be given later, the values of G.wmcan be found. The resulting
expression for the perturbation potential (Equation (1.17)) is written in
a more cohvenient manner if one expresses the 1/2 y2 and L 7" by means
of %, and Eypa o ,

2 (
42- N = Z Lo’. zo»(’)
—:;Yv ":‘E bvp %\m(ﬁ




Kop

©
= =2
where b,,, 2 -

Let us introduce

?I.

*
(1.30) bop+ o, = Oop

*
(131 by, +o,,. = o,

The perturbation potential is then based entirely in temms of the
functions Z#& y SO that

- w0 o %
*
Q .
az) @=3 [f.2,]+2 2 Lowzy,]
*

One can then write the differential equations for O-vj. by the
i(.ntroduction of Equaticns (1.30) and (1.31) into Equations (1.24) and
1.27).

- -
(1.33) @ oX ) ot 4 Dor o* o Kop Jop o
. By o Bxx op T Pkl P 2T, ¥Hr O
-t -

. * o *» / j'" * - sze :h!l!
L) Qg Cop + Doy, Cup + 7 Xy = 2 Xu, V1 O

C? and its first derivatives with respect to x are continuous.
Thereforse, according to this relation, Q"'}" and their first derivatives
are continuous.

One might ask why the hypothesis (Equation (1.32)) was not used
from the beginning instead of Equation (1.17). The reason is that the
second derivative with respect to y does not converge (because of the
character of the function 7" ). Therefore, all of the considerations
regarding the fulfillment of the differential equation for Q would
have been meaningless.

Method of Solution

The solution of the perturbation functions Otvp for the differen-
tial equations (1.33) and (1.34) is found for any duct, within the defined
limitations, by means of numerical integration., For suitable configurations,
analytical solutions can be found. In some cases, a piecewise analytical
solution may be satisfactory. In any case, the pressure distribution
along the axis is influenced only by the expressions with ¥ = 0, since
the nature of higher order Bessel functions is such that there is no
effect along the axis. ‘

Deviation from a parallel flow are found from @., o . The only expres-
sions which are of importance along the axis are those for ¥ = 0 and
¥ = 2, Actually, an infinite number of terms are needed to describe
the flow completely, but the higher terms in > and y are very small
and are of influence only close to the wall.

AF-TR=-5790 7




Conditions for the Solution of Equations (1.33) and (1.34)

Equations (1.33) and (1.34) are of the second order, and consequently
- the solutions must be determined by two boundary conditions. The first
condition is obvious. With the assumption of a subsonic duct extending
to negative infinity, one may assume that the values of the perturbation
terms o.,r should vanish as one approaches negative infinity.

The character of the second condition is less obvious. One may
first ask at which point such a condition might be given. Certainly it
cannot be a point in the supersonic region, for the fulfillment of the
condition will affect the entire solution, including points upstream of
the point where the boundary condition is given. Since this would
violate the law of the forbidden signals, the location of the other
condition should be expected to be in the subsonic region. Actually,
mathematical reasoning leads to the location of the boundary condition
at the narrowest cross-section. If one rewrites Equations (1.33) and
(1.34) in such a way that the coefficient of the highest derivative of
the term 0¥, is one, the coefficients of the other terms become singular
at the sonlc velocity. The solution of the differential equation may be
singular at any point where these coefficients are singular.

Consider now only the solutions of the homogeneous part of the dif-
ferential equation, since the influence of change in the arbitrary
constants and consequently, the influence of the boundarv condition is
limited to that part. Let the basic flow wvelocity be represented by
Py, = X= + Then the two linearly independent solutions of the homogeneous
differential equation are represented by

* .
(1.35) @auypn=PK
* _=
(136) Oyp =X%X'"" PO
where P denotes a power series of x, which starts with the absolute temm.

As the term *¢“ approaches zero (at the throat) we have 20 , Then

the expression @y. , from Equation (1.36) will tend to infinity as X+=O ,
Since this is physically impossible, the second condition is that
remains finite at the throat.

To summarize the boundary conditions, the flow deviation expressions
Oo’,,'» mst be finite at x = O and zero as X =+ =9,

SECTION II1
APPLICATIONS
Flow Through A Circular Subsonic-Supersonic Duct

We apply this theory to an axially-symmetric transonic duct configura-
tion. This duct is similar to the modified 10-Foot Wind Tunnel test section

AP=TR-5790 @
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at Wright-Patterson Air Force Bass. The duct is first cylindrical
(Section A, Figures L and 5) followed by a throat region of parabolic
profile (Section B), and finally the duct expands conically (Section C).
The configuration is geometrically determined by the subsonic junction
position X. , the radius of curvature R, and the angle of expansion e
It is desired to trace the magnitudes of the x~-velocity deviations

from a uniform, parallel flow through the duct channel.,

Tn the differential equation (1.33) for a’f.,.. , the shape of the
duct expresses itsglf by the function P (x) , which occurs .in the
coefficients of &, “ “and ox ! , and furthermore, in the function

©, which occurs {n the righthand term. '

In Section A, the duct is cylindrical and consequently the radius,
slope, and @gq, terms are
k

(2.1) F=re =1+ Yo Yo

2R
(the value of v, can be seen from the subsequent formula (2.&)).
(2.2) ©,=0
(2.3) CDB*:(%‘ Cyk (for segtion A)

Ihe profile of Section B is an approximation for a circular arc
with the radius of curvature R. Vhen approximated by & parabola with
the vertex at the minimum section of the duct, the shape is expressed

bys
:
ey r=\+via
Yy

- %

i
FS

(2.6) Qg = *( %_‘ % (for section B)

Section C starts tangential to the parabolic Section B and expands
conically at the angle oX . The shape terms are

(2.7) e+ (v — B
(2.8) €©,=«
(2.9) Cpe*:: :—';“T(x --gﬁ)) (for section C)

These values inserted into the differential equation (1.28) lead
to the specific differential equation for each section.

‘ Section A
" iy

* op K —
(2200 @g, Qo +%—f‘—a.ﬁ_o

AF-TR-5790 9




Section B
_*. " * !
(20]—1) * Qors +* &or + E'r &0)‘ —E

The constants ares _ ,

- X+
(2.12) E,»- T2 vt

Yo\
X+t R
-2
Nope Kop
(2,13) E. = Yo Xi Ta,
[y L
r 2 G‘ET %):.
Section C
-l % =2 -* K -
" [ J - e (3
(2.14) [‘H(% 2\3] a + .m)(x av. a, +l=“. a*r'ﬁi%f“

The solutions of the differential equations (2.10), (2.11), and
(2.14) will now be determined. The complete solution, in each case,
is the sum of the general solution of the homogeneous portion and a
particular solution of the non-homogeneous equation. The constants
will be determined later.

Section A
The solution of Equation (21.10) is 2 N
:_:!o== -‘i -Q T
»* (.Q (xu)) X -(_C?a (¥+)
(2.15) Q[,=C, € ex +C, @ )

Section B
The particular solution of Equation (2.11) is
* —

where L
: (_?-_ Io..)"
(c.17) E - Yo K—‘.ﬁ- '_R
3" T2R Lop 1; o
+\

= Ys ¥op
(2.1¢) E ap~ 2R Io,_.,

The homogeneous part of Equation (2.11), through a simple trans-
formation, is of the form

) 1 ' 2 -
219) Y ++vy -Lg+E)]y=0

AF-TR-5T90 10




the solutionl of which is
L&
(2.20) Y=Z [2* ®*]
The term Z denotes any linear combination of Bessel functions of

order p. The general solhtion of the homogeneous part of Equation (2.11)
then is such that the complete solution becomes

8 , LR =
(2.21) QX =Byt B, %+ Cyy J.[2 ELS *=]+C”‘N.[2 E: x¥]

Section C

A particular solution of Equation (2.1}) in Section C is given by

* o Kop
(2.22) Q“r a':.,.“

In order to find the general solution of the homogeneous part of

R \E * (u)
Equation (1.28), the transformations W= (x- 2\'.) and Qo,.(")"'c( u

are carried out. The differential equation is then written

(223 G5 (4 - )+ m(E)+Ecnq=0

where

(2.24) Eg, =

k3

I

2[=(¥+1)] %

Equation (2.23) hzs the form

(2.25) Y + bxy=0

where the solution® is given as

(2.26) Y =i 2, TS «E]

Consequently, the solution of Equat.ion (2.23) is

(2.27) d= u* z \—f-E )

1 Jahnke, E. and Emde, F., Tables of Functions. Fourth Edition. Dover
Publications, 1945, p. 147.

2 Ibid., p. U7.
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- If one substitutes for u and g(u), and writes the constamts for
the explicit Bessel function, one finally obtains

(2.26) O6p= %’{; « +(%-B= )%[C,,,T% ced+ Cop Ty (e)]

(@.29) o= B} [€,,7.3C0)~Con Ty(e)]

where
-4 % o \F
(2.30) €,= § Eg 7 (x-5%)

Determination of the Constants

The constants C.r, Cz» s C»; 9 » o « o+ and cg» which occur in

the solution for the functions O-or , are found by equating the solutions
of o..’; » given by Equations (2.1’;, (2.21), and (2.28) and their first
derivatives for the points of junction. Furthermore, there are the

conditions that oF, remain finite at the throat and that they vanish
as x tends to — o0

The condition that Q*o,. tends to zero for X >~ , according to
Equation (2.15) yields immediately

The condition that Q?,u is finite at the throat requires that the
coefficient of No in Equation (2.21) is zero.

(2.32) C,,,: /o)

% !
The condition that © & » and O-op are continuous at the

Junction of Sections A and B yields the value

2.33) Cy,.= Eap +( %ﬁ):(esr*Ew*“)
( 33 I E. Y 3 £ E t L i
TR N Sy

* * ¢
The condition that oy and ©-o. are contimous at the
Junction of Sections B and C yields the values

Tt Ll o 1o B B Tl T
Sp~ & L+
- (%l- aB-\:; * Es"z [-x%(e.) I% (el)*.l%(eb .y-.\s-(el)J
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-

(2.35) - Y K
Cors Bt Ty@lEn By x0T 2o B0Y Y@l TERT ]

more (4 20) " B0 S [T e Ty (ed +T g e Ty ce)]
s L 3
e =2 E')‘i Ko*

By the use of the previous formulae, the expressions “:; is
determined completely. The quantities Xe , R , and o< which
determine the duct geometry are determined by the specific problem
under consideration.

Discussion of Results

In the previous formulae the quantities Ke R yand X are
written in the general form. This, of course, enables us to determine
the solutions for different configurations.

~ In the following analysis the values which correspond to the Wright~-
Patterson Air Force Base 10-Foot iind Tunnel will be inserted. Before
this is done, the effect of the choice of the subsonic junction position
o 1is studied. Most investigations of a supersonic flow are made
disregarding any influences of the subsonic portion of the duct, since
there is no theoretical basis for its consideration. It is of interest
to determine some numerical values of the subsonic effects. Therefore,
a flow pattern determination will be made of a configuration which
corresponds to the supersonic part of the 10-Foot Wind Tunnel, and
three different subsonic junction positions.

Accordingly, the duct shape gives
R =50 ro o = ,15 degrees
Xo = -0.,10, =0.,20, -=0.40

The values of "\'1°r are the Bessel function arguments for which
d =
n,[I.{ﬂﬂ-Oand are

ﬁo\ - 3'832
Moa = 7,005

My =10.1735
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The values of E.n,Eau , B3 , and E. ) are determined by
Equations (2.12), (2.13), (2.17), and z2.18), respectively. The junction
constants C3j , Cg, , and Cg,. are obtained by means of Equations

(2.33), (2.54), and (2.35), respectively.

Of special interest is the velocity distribution along the axis of
the duct. The x-velocity terms found from one-dimensional theory are
given by Equations (2.3), (2.6) and (2.9). The additional x-velocity
along the axis caused by the perturbation potential @, are found from
Equation (1.32). Since 3J,(e)=1, one obtains

- * '
']
Figure 6 shows the ©-a, values through Section B for % -0 ;02 -.04 -00

In spite of appreciable initial flow deviations at some distance upstream
from the throat, the effects are hardly noticeable at the minimum cross
section and in the supersonic region. A corresponding behavior is found
for the terms oif,.', Qf;' s etc. Accordingly, even extreme changes in

the subsonic region are without importance for the supersonic region.

Figure 8 shows the velocity distribution along the axis according
to the one-dimensional theory, and a velocity which includes the correc—
tions given by o ’ Ql‘, s and a'.', + Beyond x = 0.5 the velocity distri-
bution is rather smooth, showing the present configuration to be satis-
factory. The maximum velocity deviations from the one-dimensional
theory have a magnitude corresponding to a Mach number of about .004.
The velocity deviation at about x = 0.4 is rather large, but this is to
be expected from the following reasoning. Point M (Figure 3) is con-
sidered to be the junction between Sections B and C. The effect of the
change of shape at this point propagates to the axis along the Mach
lines MN. Upstream of MN the flow, especially along the axis, corresponds
to the parabolic surfaces. Consequently, any change in pressure distri-
bution caused by the transition is felt only downstream of point B.
The one-dimensional theory (Figure 8, curve @g, ) shows the influence of
the junctions to be right at point A. The superposition of the @,
value shows the occurrence of the change at x = .38. The x-coordinate
of Point N in Figure 3, computed by an exact relationship for the Mach
angle, is x = ,367. Figure &, curve (Qg,+ ®x) shows what mi%h'lg be
expected from a more general reasoning. The functions &', a3 ‘' ,
and a%,’ are given in Figure 7.

A Remark on the Application to a Non-Symmetric Configuration

Although no examples of the application for an unsymmetric flow are
carried out, an idea of the procedure will be given. The shape of the
duct must be expressed according to iquation (1.6). For instance, one
mst carry out a harmonic analysis of the function r(x,w) with respect
to @ for various values of x. This can be done by a numerical or
analytical evaluation of the integrals (1.6a) and (1.6b), or by means
of a harmonic analyzer . Then the values of ©y are found from
BEquation (1.9). Following this preparation, the procedure can be carried
out in the same way as for an axially symmetric duct.

AFP-TR=5790 I




Solution with Q_g‘ as A Function of 1(*

A solution of the differential equation is determined for the
coefficient @g, as a power of the longitudinal position. The solution
and its derivation will be found in the Appendix (Section IV, Part F).

Concluding Remarks

A method for the analysis of transonic flow through a nearly circular
duct with only gradual charges in cross-section has been derived. One is
finally lead to the solutions of ordinary linear differential equations.
(Equations (1.33) and (1.34)). These solutions can be carried out
numerically, or even analytically in many cases.

Application of this method was made to a configuration similar
to the iiright-Patterson Air Force Base 10-Foot Wind Tunnel. A velocity
distribution through the duct was determined and the disturbances
caused by the variation in duct shapes were computed. The velocity
profile for the configuration is satisfactory. The subsonic influence
in this case is small enough that the usual consideration of no subsonic
disturbances propagated into the supersonic region is justified.
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SECTION IV
AFPENITX A

Derivation of the Potential Equation

It follows from the vorticity theorems that s with certain conditioiw
for the initial flow which are fulfilled in most practical cases, there
exists a velocity potential ® (%, ¥, @), where the coordinates are
shown in Figure l. (That is, the veiocity vector can be expressed as
the gradien} of a scalar function )« If one chooses an arbitrary

function, (X, ¥, @) and determines the velocity components accordingly;
i.e.,

(3'1) V.; - ¢-i
(3 '2) Vv = ¢’7
33) V, = P
Y
and furthemore, determines the pressure from Bermoulli's equation, then
Euler's equations of motion are automatically fulfilled. Therefore, if

a velocity potential exists, we have to check only the condition of
contimiity. The continuity equation is given by

G 35 (e V5T ¥ 37(p7 V9)+ 7 35 (e V) =0

If one inserts Equations (3.1), (3.2), and (3.3) into Equation (3.4)

65 35 (@ Be)*+ & (e dy) + 35 (e B)=0

The derivatives of @ are found from Bermoulli's equation for three-
dimensional flow

(3.6) L * -“2- (@; * (D; + g%‘&-): constawnt

where i denotes the enthalpy, so that
‘e,

iz o5
+

From the isentropic flow relations, since 4 = C T for perfect gases.

A 70 X

% = (&)
Consequently, ons writes

di _ " 4

T = (=) S
or

(3.7 diza® de

AF-TR-5790 15




r—i. 1

If Equation (3.6) is differentiated, and Equation (3.7) is inserted
the resulting expression is

Q't %+¢gd¢i+¢7d¢7*%d(% -0
Or ‘
&) de=-S($:ddz + Gy ddg + B2 d(Bp)=o0

Writing Equation (3.8) in detail, one obtains

(3.8a) :QE-- - .‘%(4,1 bz + Oy by + ___%Lui)
W -8 b b Duy
Gov) 2T TG (s Pry v Py Py ¥ I+ =

. ' . b, Puow
- (5a8e) %E; T - 5 (P bz Py Pyw + "—%—)

Now, if the partial derivatives of @ from Equations (3.8a), (3.8b),
and (3.8c) are inserted in Equation (%.5), one obtains the expression

.(3.9) - = (Ps P + Dy q>”/ M{*‘—"—) s+ ¢ Os:

u W P w ¢
© T (Pn hag+ By by + s + RaL2T)g, 2
+?¢97~§1(¢-——5—‘Y,’“*d—’i—%§“’+ )L ?d’:':‘-o

If one divides Equation (3.9) by @ and collects the terms, one
obtains the final equation

(3.0) Psq (l‘ X )"aq>17(___$_7)*¢7‘7(\'§j‘3
-2 ‘b___ﬁi“w —~ 24>—7—$L¢“’ ""«-_z %

&+
3 O."

@ w(\ - 4-0.1.

This is the complete potential equatlon for three-dimensional flow.
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APPENDIX B
Transonic Law of Similarity

The general three-dimensional equation for a steady potential flow
is given by:

(5.11) ¢i§ (‘- %{)-2 ¢37(¢i (Pa‘f\"'(p‘?f (' - %;‘;)"‘ (pcnu(“ Cb_:,_)

ot & * b ALY
- w Rw _ g w “w QL - VYV Y -
2 ThSTasPRe - Tt PIw var =0
The velocity of sound O. 1is obtained from Bermoulli's equation,

(3.12) o = 3t *' %=1 .
2 & 2 W

Where the total stream welocitys

w=( P + Cb? + 9%')‘

Let us consider a family of flow patterns, where each flow pattern
is characterized by a specific value of a parameter Z . Let the velocity
potential be given by: )

(323 P =0 (X+2 @(X,J,w) + 2* QE W) +....)

where

(G.1) K= %
(9-15) :{’_—' 7 * z

This hypothesis is justified, by the fact that its introduction into
the differential equation for & » With the limiting process Z-~0o,
results into a non-trivial equation for & . Indeed substitution of

Equations (3.12), (3.13), (3.14), and (3.15) into the potential equation
(Equation (3.11)‘ gives

» #* ~\T 3 Y
636) oFx @ee (1- (L2, XY g (Llrats)etey)

“1.

l.
* 2 (a“th.," * v D W _ 2 -
+0L-Z=(p—,7:,v(l- a’_vs)_‘_o.z‘,-q),‘,_‘.&i@_g-

The value of the sonic velocity as given in Equation (3.12) dan

be written in terms of @¥ and the velocity potential, and is finally
expressed as

3an o= o = (%-1)(= Qz) o*
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The introduction of Equation (3.17) into Equation (3.16) leads to
2° Ry [- Qz(xe)-2 Q;]- 2 z’cpzq- (1+2Pz) Py

+2° Q:;y Ci-(x-)z P% ‘?cp;‘]“‘ "Ei_:/‘,li O _(x_,)chq]
+2 T O-g-nz @g) = 0

Since #Z is small, only the terms of the lowest power of Z prevail.
The equation is divided by #* , and one obtains

(3.18)

Y

This equation shall be referred to as the simplified transonic potential
equation,

Let us consider Equations (3.13), (5.14), and (3.15) for small
values of

(.20 ¢ = (% + 2 @ (%,7,w)

The velocity components given by

.21) P = Kro¥z Pz (X ¥, «)
(3.22) gy = N Xy (X,7,@)
(3.23) CL;»_—- Xat %“-’ (%,5,w)

Let us consider flow patterns which belong to different values of
the parameter £ , In such flow patterns the points having the same x
and y values are called corresponding points. From Equations (3.1l4)
and (5.15) it is seen that at correspondi{ng points, the values of X
are the same and the ¥ values vary as 2 *, At corresponding points
the deviation of the X velocity is proportional to Z , the ¥ velocity
and the w velocity are both proportional to 2t . The significance of
# is found from the conditions at infinity. At infinity the
deviation of the X velocity from the sonic velocity is proportional to
the difference of the free stream Mach number from one. Therefore,
Z is also proportional to the difference btetween the stream lach

number and one.

For & = 0 the streamlines have a constant ¥. The deviations of
the streamlines from a line ( ¥ = constant) are found by integrating the
slope of the streamlines. The component of the velocity deviations of we,
as well as the deviation of ¥, behaves proportional to 2% . Conse-
quently, the deviation of the streamlines from the lines ¥ = constant,

w = constant, behave like -z*‘ + To sumarize the transonic law of
similaritys .
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1. The X coordinates of corresponding points are the same

2. They coordinates of corresponding points are proportional
to =~%

5. The difference between the x velocity and the sonic velocity
is proportional to &

4. The difference betwsen the pressure and the sonic pressure is
proportional to &

5. The deviation of the streimlines from lines of constant ¥y and
W is proportional to %

APPENIIX C

Boundary Condition

Along a body at rest the velocity vector is parallel to the surface;
that is, the component of flow normal to the surface is zero. To express
the relation, let the unit vectors in the direction of increasing x, y
and w coordinates be Ux, Uy, and U,, , respectively. The total

velocity vector then is expressed by

2w O[O+ P WU+ @y Uy + 957% U]

The vector component normal to the duct surface is given by
~ & 0 —
(3.25) - ¥z W \_u.., tWUy=

The scalar product of these two terms is the component of the velo-
city vector normal to the surface. According to the boundary condition,
this component is zero. Then one obtains

*
(3.26) “CL*<|'\' CP*) ;-—E' + 0;‘- Q7 - “_.QE %V_'w:o

- S
The assumption that, CQ is a small quantity implies that the

slope of the duct and surface is gradual, and consequently .33'- and Ar
are small quantities. X dew

Therefore, the expressions (P* v and Qw AX.  are of
w

second order, and can be neglected in Equation (5.26). This results in

(3.27) - :‘;:- + @ =0
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APPENDIX D

Derivation of the Basic Flow Velocity

The basic flow velocity ‘93‘ is the velocity obtained from one-
dimensional flow theory, and is expressed as a function of the duct radius
at the cross section under consideration.

The continuity equation is written
1 *1. -He H
(3.28) rrweVz=yr mWe &

where V is the absolute value of the welocity. Since eV is a function

of V, it can be developed vn.tlel respect to (V - a#). OUne then obtains

* ¥ V—o¥ )2
(3.29) V=0 & — ga—qr (1) (—'—E—)
If one introduces the relation

(5-50) A r=rY-Yo

the continuity equation is rewritten as

Q*o.*_.' %(‘*{) (V-;_ﬂ‘-)‘&]v_(“,_‘_‘\‘_)z:e*&*_‘_r .

If r is small, the higher order terms can be neglected so that
* ac¥ ar T
G (v-oy = E A

Since @sz %.i'-‘ , the basic flow velocity is expressed by

(3.32) (pex-;[%' %].!;

APPENDIX E

Analytical Representation of the Constants I.,., K. I ,T. v o and Kvp

An analytical representation is sought for the integrals that occur
in the expressions L,, and K.». The first term I.»i.s

- (3.33) 1.»:: S' Yzi";(Y)dY = S' Y 3. ('ﬁg,.\[\“‘ly

. (-]
]Zntagra:bi.ng3 °

1 - Y"\
(5434) 1.,,-— 2 [X.‘(r,,»y)"s. Moy ‘I) 'S-.(‘l.,. ‘D

7o

31bid., p. W5
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Then)" since

J-\ (:1 om 7) =7, ('7’°r* Y)
G35 Ton=% L3 (Fou¥)*+ T Glon ¥)]

The values for the arguments of the Bessel function -S ("1. Y) were
chosen so that ‘D—’i—(z‘-} s O, However, it is also true that t;' (=)_ -T, ()

so that Equation (3. 3;‘) simplifies to the analytical expression dv
(5.36) I, = = 0 (‘70’. Y)

The term K.,.. is defined by

(3:37) Kopa= fy Z..(v) Ay-f ARE (o ) &y

If one denotes the . argument by w = (ﬂ.r Yy ) Equation (3.37) is rewrit-
ten as

K= 717 23,00 4

»

- ' | "lo» 3
(3.36) K"r‘ = g w Ve (W)du
r
An :i.nt'egrat.ion5 gives the relat.a.onshn.p

(3.39) °»= -;E-r-? [u T.(w)-2 5:'." Wt ) (W) dc:_\

or

G K, = ﬁ":,t [u‘ T2 Wl (W)-4uy, (u)] j"’

If the Equation (3.40) is rewritten in terms of y, and the limits
of y = 0 and y = 1 are inserted, the new relation becomes

G K.,z .) =+ 27, 7. (Fo. )+ ('\1,» 4»'1,,”)'3— @, 7)]
Since ._sd_(‘_;l). =.X.(«1) =0 the Xop is reduced to
G2) Kop= 53 T Fun¥)

b 1bid., p. W5
5 Ibid., p. 145
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The term I—,,» is defined as

s L= § ¥ 2. 4y=§ v T Gy )4y

It is seen that the integration6 leads to the expression

o) Ty L [5G y)-T. Gl P T Gy

Also?

Gbs) 2, ()= —‘E—E}‘Q + T Z,Q)
(Bui6) = Zpn (W)= —-2—%9 oz,

The substitution of Equations (%.45) and (3.46) into Equation (3.4L4)
gives the new relation

Gun T, = 1-: [“Sv‘(:\v v+ 3\, (")v,.y\]‘

where J, («1, " Y) denotes the firmt derivative of J, with respect
to the argument

Since the arguments are chosen such that Ky (‘)v Y) O and
the integration limits are y = O and y = 1, the value of I\, f‘

Gae) T, =% (3, Y)
The tem Ky is written
AR AL - oy -
69 Kupm [ 4™ 2o O 4y = (Y TGN Y
Substituting the following differential equation

(5:50) g5 [_y T, (ﬂy,y)]*-[‘/m,."'] 3, (*7,,3/) =0

into Equa.tion (3 .4j9), one obtains

3.50) Ky, = .1 RN &Ly W (‘7v;~‘/)_7“7'*"5' “3 4, 7)47'

6 Tbid., p. U6
7 1vid., p. W5
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Integrating by parts, one can rewrite Equation (5.51)

(3.52) K,,.= ;;:;t [—y"y 3, (A, 7)]:*'{; Y T, (A)4dy +V‘ﬁ " LGy

Further integration and the substitution of the limits of y=0
and y = 1, leads to the relation

65 K= 352 [T e )+ T G )]
Since 'Sv'('vl v y)=Othe amlytical representation of Wy is
- Y -
O3 Kup = 30 Ty (B V)
APPENDIX F
Solution of Equation (1.33) if Qgi is Given by X*

The solution of the differential equation (1.53) is determined
for a more general case. Let the coefficients of the differential equation
be such that it is a power t of the longitudinal position.

. R
(5.55) Qg =%
This, when inserted into the differential equation gives

*nu 5 % I e * _

In order to remove the inconvenient power X x in the coefficient

of 6-?,. » let us introduce a new independent variable A by the
equation w =x¥ where k is a suitable constant which is chosen later.
Then one obtains

d&? - k-1 AQ.*‘
(3.57) T%t“ =k X = e

Ato* \roatk-d) d%X k-2 d ¥
(3.58)  Spee-z X Sk A k(k-HXTT S
If one writes A= ‘:‘iﬁ and inserts Equations (3.57) and (3.58)

into Equation (3.56), the following equation will result

c\tcx* v da¥ Aok
3 [ [ L)
(5.59) 3= & T Y F—J&:—RT
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where

(3.60) Y = KEX=L

K
If K=1\- —— , Equation (%.59) simphfies to
(3.61) C_l_a__p_ A+ - ﬂ_&_op °r =0

Equation (3.61) has the following form
.62) o+ (=2 )a.-&-(g-\r——l’-)cxo

the solutions of which is given by
S .
5.63) =W Z,(8 w)
where % p isa Bessel function of p order.

Let us set the following relations:

-
(3.64) S = 2

(3.65 p=s='3T

Goe) @ = ()

The solution of the differential equation (3.61) involving coeffi-
cients that are powers of x is expressed as

(567 Oy =S 2, [(‘%1)"{&]

where

_ =%
(jo6s) S - 2-

& Ibid., p. 16
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X = b T __ £ yedw

X dx
FIG. 2~ SPACE ELEMENT IN
CYLINDRICAL COORDINATE SYSTEM.

FIG. 1 — GCYLINDRICAL
COORDINATE SYSTEM.

FIG. 3— PROPAGATION OF DISTURBANCES FROM SUPERSONIC JUNCTION-
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